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1. INTRODUCTION

Peter D. Lax has given seminal contributions to several key areas of
mathematics. His contributions are part of a long tradition where the
interaction between mathematics and physics is at the core. Physics of-
fers challenging problems that require intuition to solve. Mathematics
can reveal deep inner strucures and properties, and rigorous proofs pro-
vide solid foundations for our knowledge. John von Neumann, who had
considerable influence on Lax, concluded in 1945 that1 “really efficient
high-speed computing devices may, in the field of non-linear partial dif-
ferential equations as well as in many other fields which are now difficult
or entirely denied of access, provide us with those heuristic hints which
are needed in all parts of mathematics for genuine progress.” Lax stated
in 1986 that2 “[a]pplied and pure mathematics are more closely bound
together today than any other time in the last 70 years”. It is in this spirit
that Lax has worked.

Peter D. Lax

In this short and nontechnical presentation we
will focus on two areas, both within the theory of dif-
ferential equations. Here we will address Lax’s con-
tributions where the applied aspects are dominant
and have wide ranging consequences for our mod-
ern society. Thus, we will unfortunately not discuss
his fundamental contributions to classical analysis
and scattering theory, in particular, the development
of the beautiful Lax–Phillips scattering theory.

The first topic is the theory of shock waves. Shock
waves appear in many phenomena in everyday life. Most easily explained
are shock waves coming from airplanes moving at supersonic speeds, or
from explosions, but shocks also appear in phenomena involving much
smaller velocities. Of particular interest is the flow of hydrocarbons in
a porous medium, or to put it more concretely, the flow of oil in an oil
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1Collected works of John v. Neumann, vol. V, 1963, p. 1–32.
2Mathematics and its applications, The Mathematical Intelligenzer 8 (1986) 14–17.
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reservoir. It is well-known that oil and water do not mix, and the inter-
face between regions with oil and regions with water form what is math-
ematically defined as a shock. The dynamics of the shocks are vital in the
exploitation of hydrocarbons from petroleum reservoirs. Even in every-
day phenomena like traffic jams on heavily congested roads, we experi-
ence shock waves when there is an accumulation of cars. The shocks do
not come from collisions of cars, but rather from a rapid change in the
density of cars..

The second topic comes from the theory of solitons. The theory of soli-
tons has a long and convoluted history, but now belongs at the heart of
pure and applied mathematics with considerable consequences in sev-
eral areas of technology. The theory originated in an obscure part of fluid
dynamics. However, with, among other things, the discovery of the for-
mulation of these problems using Lax pairs, new and startling connec-
tions between several different areas of mathematics were uncovered.
Furthermore, soliton theory finds several applications in distinct areas
of physics, for instance in quantum field theory and solid state physics,
and in modeling biological systems. Finally, solitons are being applied to
communication in optical fibers.

A more extensive discussion of several aspects of Peter Lax’s contri-
butions to mathematics can be found in [1]. An interview with him ap-
peared in [2], and the full range of his contributions can be studied in his
recently published selected works [3].

Before we return to a more detailed discussion of these topics, we will
have to explain what a differential equation is.

2. WHAT IS A DIFFERENTIAL EQUATION?

In order to discuss differential equations, we first have to introduce the
derivative. Consider the situation when you are driving your car. On the
odometer, you can measure the distance from your starting point, and
knowing that, your position is determined. The distance you cover per
unit of time is called the velocity, and that, of course, is what is displayed
on the speedometer. Mathematically, the velocity is nothing but the de-
rivative of the position. To put this in mathematical terms, we let x de-
note the position of the car, measured along the road from some starting
point. It depends on time, t , so we write that x = x(t ). The velocity, which
we denote by v and which depends on time, v = v(t ), is the change of
position for a small time interval, and mathematically we call that the de-
rivative3 of x, and write x ′(t ). Thus v(t ) = x ′(t ).

If a passenger in the car at each instant of time notes down the velocity,
it should be possible to compute the position of the car at each point in

3To make it more precise, if you advance from position x(t ) at time t to position
x(t+s) during the time period s, the velocity at time t is approximately (x(t+s)−x(t ))/s,
and the approximation gets better the smaller time interval s you use. Mathematically,
the velocity equals the limit of (x(t + s)−x(t ))/s as s tends to zero.
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time if we know the time and place that the trip started. To put it more
precisely, if we know the starting point x0 (and synchronize our clocks so
that we start at time t = 0), thus x(0) = x0, and we know v(t ) for all t , we
should be able to compute the position x as a function of time, that is,
determine x = x(t ). To solve this problem we have to solve a differential
equation, namely x ′(t ) = v(t ).

Differential equations are nothing but equations that involve deriva-
tives. You may think that we are doing a lot out of a small problem. How-
ever, it turns out that all the fundamental laws of nature can be expressed
as differential equations, as the following list displays

• Gravitation (Newton’s law),
• Quantum mechanics (The Schrödinger equation),
• Electromagnetism (Maxwell’s equations),
• Relativity (Einstein’s equations),
• The motion of gases and fluids (The Navier–Stokes’s equations).

The motion of planets, computers, electric light, the working of GPS (Global
Positioning System), and the changing weather can all be described by
differential equations.

Let us proceed to a more complicated example than the position and
velocity of cars. Consider the heat in the room where you are sitting. At
each point (x, y, z) in space and time t we let T = T (x, y, z, t ) denote the
temperature. By assuming that heat flows from hot to cold areas propor-
tional to the temperature difference, that heat does not disappear (which
means that the room is completely isolated from the surroundings), and
that there are no heat sources, one can derive that the temperature dis-
tribution is determined by the so-called heat equation, which reads

Tt = Txx +Ty y +Tzz .

Here Tt means the derivative of the temperature with respect to the vari-
able t , while Txx denotes the derivative of the derivative, both with re-
spect to the space variable x, and similarly for the remaining terms. Even
simple problems give rise to difficult differential equations! Assuming
that we know the initial temperature distribution, that is, we know T =
T (x, y, z, t ) for t = 0, our intuition tells us that the temperature should be
determined at all later times. This is called an initial-value problem. The
mathematical challenge is to prove this assertion and describe a method
to compute the actual temperature. In general terms this is the problem,
but equations that are considerably more difficult than the heat equation
form the core of Lax’s contribution to differential equations.

Ideally, when you are given a differential equation, you want the prob-
lem to be well-posed in the sense that

• the problem should have at least one solution (existence of solu-
tion),

• the problem should have no more than one solution (uniqueness
of solution),
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• the solution should be stable with respect to perturbations (sta-
bility).

The first two conditions indicate that the problem should have a unique
solution; the third condition states that a small change in the initial data
should give a small change in the solution. Unfortunately, differential
equations normally do not possess solutions that are given by formu-
las, and so we must add to our “wish list” that we should be able to find
a way to compute the solution. The problems are often very complex
and require high speed computers to determine an approximate, or nu-
merical, solution. Solutions of differential equations may be very com-
plicated, and there is no unified mathematical theory that covers all, or
most, differential equations. Most of the interesting differential equa-
tions are nonlinear, where the sum of two solutions is not a solution,
which further complicates matters. Different classes of differential equa-
tions require rather different methods, but even at this very general level,
Lax has contributed two highly useful results that are described in all
books in the area. The Lax–Milgram theorem provides a condition that
stating that differential equations that can be described by an abstract
variational problem, possess a unique solution. The Lax equivalence prin-
ciple states that for a well-posed linear initial-value problem, any con-
sistent numerical method is stable if and only if it is convergent. (The
equivalence principle applies, for instance, to the heat equation.)

It is appropriate here to digress briefly on the interaction between math-
ematics and computers. Peter Lax has always been a strong proponent
of the importance of computers to mathematics and vice versa, saying
that4 “[High speed computers’] impact on mathematics, both applied
and pure, is comparable to the role of telescopes in astronomy and mi-
croscopes in biology”. The logical construction of computers and their
operating systems are mathematical by nature. But computers also serve
as laboratories for mathematicians, where you can test your ideas. New
mathematical relations can be discovered, and your hypotheses and as-
sumptions can be disproved or made more likely by applying computers.
Lax has given the example of the great mathematician G. D. Birkhoff who
spent a lifetime trying to prove the ergodic hypothesis. If Birkhoff had had
access to a computer and had tested the hypothesis on it, he would have
seen that it cannot be true in general. On a more technical level, prob-
lems of modern technology like the simulation of systems as complex as
airplanes, oil rigs, or the weather not only require very powerful comput-
ers, but also the development of new and better mathematical algorithms
for their solution. It is a fact that, in broad terms, the development of

4The flowering of applied mathematics in America, SIAM Review 31 (1989) 533–541.
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high speed computers (hardware) and the development of new numer-
ical techniques (software) have contributed equally to the total perfor-
mance we observe in simulations. Peter Lax himself has made penetrat-
ing contributions to the development of new mathematical methods that
have enabled us to understand and simulate important phenomena.

3. SHOCK WAVES

B. Riemann

In 1859 the brilliant German mathematician Berhard
Riemann (1826–66) considered the following problem: If
you have two gases at different pressures in a cylinder sep-
arated by a thin membrane, what happens if you remove
the membrane? This problem has later been called the
Riemann problem, and it turns out to be a very compli-
cated question. The behavior of gases is well modeled by
the Euler equations, which read5

ρt + (ρv)x = 0,

(ρv)t + (ρv2 +P)x = 0,

Et + (v(E +P))x = 0,

P = P(ρ),

where p, v, P , and E denote the density, velocity, pressure, and energy
of the gas, respectively. This is a truely intricate system of equations that
remains unsolved in the general case to this day.

Flow of gas past three cylinders.

The Euler equations consti-
tute a special case of a class of
differential equations called
hyperbolic conservation laws.
The solutions of these equa-
tions are very complicated as
the illustrations show. These
equations are fundamental in
several areas of applied sci-
ence, for they express that a
quantity is conserved. Ex-
amples abound because there
is conservation of mass, mo-
mentum, and energy in iso-
lated systems. In addition to
the motion of gases, applica-
tions include the flow of oil in
a petroleum reservoir. A less

5Riemann studied the simpler problem where the third equation, the one for the en-
ergy, is ignored. Subscripts indicate derivatives with respect to the variable given.
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obvious example is the dynamics of cars on a highly congested road with-
out exits or entries; here the conserved quantity is the number of cars.

The core of the problem with hyperbolic conservation laws, regardless
of whether they describe traffic flow or the flow of oil in a petroleum reser-
voir, is that the solution develops singularities, or discontinuities, called
shocks. Shocks correspond to very rapid transitions in density or pres-
sure. Numerical methods have difficulty resolving these shocks, and the
mathematical properties are very complicated. The mathematical mod-
els allow for more than one solution, and the selection principle, which
is known as the entropy condition, for determining the one true physi-
cal solution is very complicated. Indeed, at this point Riemann erred and
selected the wrong solution. The velocity of the shock was determined
by the Scottish engineer, Rankine, and the French mathematician, Hugo-
niot, but it was left to Peter Lax in 1957 to come up with a simple criterion,
now called the Lax entropy condition, that selects the true physical solu-
tion for general systems of hyperbolic conservation laws. The admissible
shocks are called Lax shocks. The solution of the Riemann problem is
now called the Lax theorem, and it is a cornerstone in the theory of hy-
perbolic conservation laws. His solution has stimulated extensive further
research into different entropy conditions applicable to other systems. In
particular, the fundamental existence result for the general initial-value
problem posed by Glimm, uses the Lax theorem as a building block.

The pressure of a gas ex-
ploding in a box.

Once we have decided upon a selection
principle, we still have to compute the so-
lution. Here Peter Lax has introduced two
of the standard numerical schemes for solv-
ing hyperbolic conservation laws, namely the
so-called Lax–Friedrichs scheme and the Lax–
Wendroff scheme. These schemes serve as
benchmark tests for other numerical tech-
niques and have served as a starting point
for theoretical analysis. Indeed, the Lax–
Friedrichs scheme was used by the Russian
mathematician Oleı̆nik in her constructive
proof of the existence and uniqueness of solu-

tions of the inviscid Burgers equation. Another highly useful result is the
Lax–Wendroff theorem, which states the following: If a numerical scheme
for a nonlinear hyperbolic conservation law converges to a limit, then we
know that the limit at least is a solution of the equation. Together with
Glimm, Lax proved deep results concerning the decay in time of solutions
of systems of hyperbolic conservation laws.

Peter Lax’s results in the theory of hyperbolic conservations laws are
groundbreaking. They have resolved old problems, and have stimulated
extensive new research in the field, and they are still at the core of the
field.
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4. SOLITONS

J. Scott Russell

The theory of solitons can be traced back to Au-
gust 1834 when the Scottish engineer, John Scott Rus-
sell (1808–82), made the following observation: riding
on his horse along a channel near Edinburgh, he ob-
served a boat that was being pulled by horses along
the channel. When the boat came to a halt, an isolated
wave emanated from the bow, and Scott Russell was
able to follow it for more than a kilometer. Contrary
to what one would expect, the wave did not disperse,
and its shape remained unchanged. Completely fasci-

nated by the phenomena, which many people must have observed before
him without noting its peculiarity, Scott Russell studied the waves that he
called solitary waves for several years.

A modern re-
enactment of the
solitary wave.

His observations were controversial, and sev-
eral eminent scientists, such as Airy and Stokes,
were skeptical of his observations. However, with
the derivation of a model for water waves by the
Dutch mathematicians Korteweg and de Vries in
1895 that could indeed reproduce this behavior,
solitary waves were established as a true, albeit
rather specialized phenomena, of nature. The
model they derived is now called the Korteweg–
de Vries equation, KdV for short. To make a long
story short, the KdV equation disappeared into
oblivion for a long time, and only after renewed
interest by Zabusky and Kruskal in 1965, was in-
terest in the KdV equation revived. Through their
analysis using numerical simulations, they dis-

covered that the KdV had solutions that interacted like particles—they
could collide and interact without changing shape. Zabusky and Kruskal
coined these solutions “solitons” as they had particle-like properties like
electrons, protons etc. (See the figure with two solitons.) It was now clear
that the equation possessed deep structure and had potential for appli-
cations in several areas. In the landmark paper of 1967, Gardner, Greene,
Kruskal, and Miura discovered an ingenious method, called the inverse
scattering transform, for solving the KdV equation. Though the method
was clearly a tour-de-force, it was highly attuned to to the peculiarities of
the KdV equation. Several “miracles” made the method work. As part of
their method, they studied an associated linear equation, for which sev-
eral important quantities remained unchanged, or invariant, under the
time evolution. Enter Peter Lax. He focused on the invariance properties
of the linear problems and described a pair of operators, now called Lax
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Two solitons, illustrated at three different times. The big soliton
overtakes the small one. Their shapes are preserved.

pairs, that revealed the inner mechanism of the inverse scattering trans-
form. When the Lax pair satisfies the Lax relation, it is indeed equivalent
to the KdV equation. To make this connection more precise, let us first
first write down the KdV equation, which reads6

ut −6uux +uxxx = 0.

The Lax pair L, P is given by the operators7

L =−∂2
x +u, P =−4∂3

x +3u∂x +3ux ,

with the property that the Lax relation8

Lt − (PL−LP) = ut −6uux +uxxx = 0

holds. The Lax pair is so constructed that the differential operator on the
left-hand side that is a priori a complicated differential operator, reduces
to the KdV equation. Equations with properties like the KdV equation are
called completely integrable.

With this deep and startling revelation, it was clear that the inverse
scattering transform was not restricted to the KdV equation, and that Lax
pairs for other differential equations of mathematical physics would now
have to be looked at. Together with the zero-curvature formulation of Za-
kharov and Shabat, several of the important equations of mathematical
physics suddenly turned out to be completely integrable, for instance, the
sine-Gordon equation, the nonlinear Schrödinger equation, the massive

6The variable u corresponds to the distance from the surface of water to the bottom
in Scott Russell’s original observation.

7L and P are operators, that is, they are functions whose arguments in turn are func-
tions. The operator ∂n

x gives the nth derivative of a function with respect to the variable
x.

8The derivation is as follows: The time invariance says that there is a unitary opera-
tor U =U(t ) such that U−1LU is time-independent, i.e., its derivative with respect to t
vanishes. Postulating that U satisfies the first-order differential equation, Ut = PU for
some operator P , a short calculation shows that the Lax relation is satisfied.
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Thirring system, the Boussinesq equation, the Kadomtsev–Petviashvili
equation and the Toda lattice, to mention only a few.

The peculiar properties of these equations have had immense conse-
quences in several areas of mathematics and physics as well as several
areas of technology. One example can be mentioned here. There has
been experimented using solitons for high-speed communication in op-
tical fibers. The digital signal is coded using “ones" and “zeros", and we
can let “ones" be represented by solitons. A key property of solitons is that
they are exceptionably stable over very long distances. This offers the po-
tential of considerably higher capacity in communication using optical
fibers. Furthermore, the theory of solitons has revealed new and hitherto
unknown relationships between various branches of mathematics.

Epilogue. Lax considers himself both a pure and an applied math-
ematician. His advice to young mathematicians is summarized in9 “I
heartily recommend that all young mathematicians try their skill in some
branch of applied mathematics. It is a gold mine of deep problems whose
solutions await conceptual as well as technical breakthroughs. It dis-
plays an enormous variety, to suit every style; it gives mathematicians
a chance to be part of the larger scientific and technological enterprise.
Good hunting!”
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